Connections Compatible with Tensors. a Characterization of Left-invariant Levi–civita Connections in Lie Groups

نویسندگان

  • PAOLO PICCIONE
  • DANIEL V. TAUSK
چکیده

Symmetric connections that are compatible with semi-Riemannian metrics can be characterized using an existence result for an integral leaf of a (possibly non integrable) distribution. In this paper we give necessary and sufficient conditions for a left-invariant connection on a Lie group to be the Levi–Civita connection of some semi-Riemannian metric on the group. As a special case, we will consider constant connections in n.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Levi-civita Connections of Flag Manifolds

For any flag manifold G/T we obtain an explicit expression of its Levi-Civita connection with respect to any invariant Riemannian metric.

متن کامل

The Single-leaf Frobenius Theorem with Applications

Using the notion of Levi form of a smooth distribution, we discuss the local and the global problem of existence of one horizontal section of a smooth vector bundle endowed with a horizontal distribution. The analysis will lead to the formulation of a “one-leaf” analogue of the classical Frobenius integrability theorem in elementary differential geometry. Several applications of the result will...

متن کامل

Operator-valued tensors on manifolds

‎In this paper we try to extend geometric concepts in the context of operator valued tensors‎. ‎To this end‎, ‎we aim to replace the field of scalars $ mathbb{R} $ by self-adjoint elements of a commutative $ C^star $-algebra‎, ‎and reach an appropriate generalization of geometrical concepts on manifolds‎. ‎First‎, ‎we put forward the concept of operator-valued tensors and extend semi-Riemannian...

متن کامل

Dirac Operators for Coadjoint Orbits of Compact Lie Groups

The coadjoint orbits of compact Lie groups carry many Kähler structures, which include a Riemannian metric and a complex structure. We provide a fairly explicit formula for the Levi–Civita connection of the Riemannian metric, and we use the complex structure to give a fairly explicit construction of the Dirac operator for the Riemannian metric, in a way that avoids use of the spin groups. Subst...

متن کامل

Holonomy and Projective Equivalence in 4-Dimensional Lorentz Manifolds⋆

A study is made of 4-dimensional Lorentz manifolds which are projectively related, that is, whose Levi-Civita connections give rise to the same (unparameterised) geodesics. A brief review of some relevant recent work is provided and a list of new results connecting projective relatedness and the holonomy type of the Lorentz manifold in question is given. This necessitates a review of the possib...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005